Haskell at PIK

Haskell in Leipzig

5 December 2006




Formalising ‘“Vulnerability”

e System:
f:i: X->FX
We consider only the case where F is a monad

data (Monad m) => Sys m a = Sys (a -> m a)




Formalising ‘“Vulnerability”

e A system can be applied:
apply :: (Monad m) => Sysma->ma->ma
apply sys X = X »= SyS
and iterated:
iter ;; (Monad m) =>Sysma->ma->Int->ma

iter sys x n = take n (iterate (»= sys) x)




Formalising ‘“Vulnerability”

e Examples:
m = Id Deterministic
m = [] Non-deterministic
m = SimpleProb Stochastic (M. Erwig)

Most important: Combinations of these.




Formalising ‘“Vulnerability”

e Deterioration
worse_than :: (Monad m) => m a -> m a -> Bool
a partial strict order
(apply sys x) ‘worse_than‘ x

expresses a general idea of deterioration of the state.




Formalising ‘“Vulnerability”

e Vulnerability
Deterioration in the context of a socio-ecological system:
sys i (X,Y) -> m (X,Y)
or
soc.sys i (X,Y) ->m X
ecosys :: (X,¥Y)->mY

sys = tau . pair(soc_sys, eco_sys)




Formalising ‘“Vulnerability”

e Problems:

— Given a non-deterministic soc_sys and a stochastic eco_sys, how
can they be combined?

— Check that worse_than is a strict order
— Extend strict orders froma->atoma->m a

— Etc.




The S model for parallel computations

e Formalisation of BSP

e Main elements:
— Distributed data newtype D a = D (Proc -> a) e.g. pid = D id

— Monad definition used to describe local computations




The S model for parallel computations

e Main elements (cont.):
— Communication primitive: exch :: D [(a, Proc)] -> D [(a, Proc)]

— Reduction of a constant value:
val dx = dx O, if dx is constant

undefined otherwise.




The S model for parallel computations

e Usage:
— Formulate problems
— Implement and test proposed solution

— Serve as documentation of C+-+ implementation




